A Fourier Interpolation Method for Numerical Solution of FBSDEs: Global Convergence, Stability, and Higher Order Discretizations

نویسندگان

چکیده

The convolution method for the numerical solution of forward-backward stochastic differential equations (FBSDEs) was originally formulated using Euler time discretizations and a uniform space grid. In this paper, we utilize tree-like spatial discretization that approximates BSDE on tree, so no interpolation procedure is necessary. addition to suppressing extrapolation error, leading globally convergent FBSDE, provide explicit convergence rates. On alternative grid conditional expectations involved in are computed Fourier analysis fast transform (FFT) algorithm. then extended higher-order FBSDEs. Numerical results demonstrating presented commodity price model, incorporating seasonality, forward prices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability, consistency, and convergence of numerical discretizations

A problem in differential equations can rarely be solved analytically, and so often is discretized, resulting in a discrete problem which can be solved in a finite sequence of algebraic operations, efficiently implementable on a computer. The error in a discretization is the difference between the solution of the original problem and the solution of the discrete problem, which must be defined s...

متن کامل

A hybrid method with optimal stability properties for the numerical solution of stiff differential systems

In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...

متن کامل

A Global Convergence Result for a Higher Order Difference Equation

Let f (z1, . . . ,zk)∈ C(Ik,I) be a given function, where I is (bounded or unbounded) subinterval of R, and k ∈ N. Assume that f (y1, y2, . . . , yk) ≥ f (y2, . . . , yk, y1) if y1 ≥ max{y2, . . . , yk}, f (y1, y2, . . . , yk) ≤ f (y2, . . . , yk, y1) if y1 ≤ min{y2, . . . , yk}, and f is nondecreasing in the last variable zk. We then prove that every bounded solution of an autonomous differenc...

متن کامل

semi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method

در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...

15 صفحه اول

Convergence of product integration method applied for numerical solution of linear weakly singular Volterra systems

We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of risk and financial management

سال: 2022

ISSN: ['1911-8074', '1911-8066']

DOI: https://doi.org/10.3390/jrfm15090388